We provide free microfluidic tutorials.
Browse through our numerous microfluidic Application Notes made by researchers for researchers to build your microfluidic setup.
These are detailed how-to tutorials based on several microfluidics applications in scientific research.
We help you with droplet generation and manipulation, avoiding air bubbles in microfluidics setups, performing live cell assays on microfluidics chips, how to set your flow regulation parameters and more.
While you’re here, you might want to look at our free microfluidics resources:
47 articles
Microfluidics is the science of handling small amounts of liquids, inside micrometer scale channels. Discover how to handle fluids for your microfluidic experiments.
This application note demonstrates a smart use ouf Elveflow's Pressure sensor and sensor reader for Direct-Ink-Writing flow control.
Learn how to set up your development environment for Elveflow products with this comprehensive tutorial.
This user guide will show you how to run microfluidic colocalization studies of single molecule spectroscopy.
This application note explores the basic principle of pneumatic pumps and a flow controller based on the basic principle of pneumatic pumps, known as pressure driven flow control. It also demonstrates the applications of pressure driven flow control in a range of industrial & research fields.
Study the impact of molecular transport on cell cultures with a cross flow membrane chip and microfluidic instruments.
Precise liquid injection system for manipulation of small volumes of fluids using the MUX distribution and the MUX recirculation valve.
This application note explains how to set up a robust and reproducible microfluidic platform for liposomes assembly with improved encapsulation efficiency and reduced polydispersity in size.
Single-wall carbon nanotubes (SWCNTs) are considered as quasi 1-dimensional (1D) carbon nanostructures, which are known for their outstanding anisotropic electronic, mechanical, thermal and optical properties.
This application note describes how to combine and synchronise liquid perfusion and imaging using an Olympus spinning disc confocal microscope together with an Elveflow pressure-driven flow controlled microfluidic system.
Mixing is a crucial step for several microfluidic applications like chemical synthesis, clinical diagnostics, sequencing and synthesis of nucleic acids
This application note describes how microfluidic can be employed as a nanoparticle generator based on the example of PLGA bead generation.
Learn how to perform PLGA nanoparticle preparation with Elveflow instruments and a microfluidic chip
47
The application note describes how to convert various units of shear stress and/or pressure from one to another: shear stress conversion from Pascal, atmosphere, and N/m²...!
The application note describes how to convert various units of viscosity from one to another: viscosity conversion from Poise, Pa.s, Dyn.s/cm²...
Elveflow's developped a microfluidic resistance calculator dependent upon the microfluidic system from the flow rate, the device, the tubing to your fluid properties.
Elveflow's microfluidic calculator permits to calculate flow rate in microfluidics dependent upon the microfluidic system from the device, the tubing to your fluid properties.
Elveflow developped a free online microfluidic calculator. This tool has been designed to help researchers and especially non specialists of the microfluidics field. It helps you assess key parameters to configure your microfluidic experiment.
The aim of this application note is to show how to easily perform a very responsive and precise flow rate control anywhere in your setup by using an Elveflow® OB1 pressure & flow controller and a Bronkhorst® flow sensor.
In this review we will explain the operating principle of pressure driven flow control, the advantages / disadvantages of the different technologies and how to choose between a peristaltic pump and pressure control depending on your requirements.
Air bubbles are a very common issue for microfluidic experiments. They are very difficult to avoid, and they can be really difficult to remove from the microfluidic device. Moreover, they can be really detrimental for the experiment.
Gas bubbles circulating through a microfluidic setup can damage the biological sample of interest and/or cause experimental errors
Soft-Robotics: Creation and Control of microfluidic soft-robots
The fluorescence probe is a robust and highly sensitive approach for detecting trace amounts of substance owing to its simplicity and non-invasiveness. Moreover, the use of optical methods, which is usually low cost, light-weight, high throughput and can be easily deployed in large scale for on-field or point-of-care applications.
The OptoReader is a highly sensitive detection device taking advantage of advanced photo-detection technologies. Its optical fiber based design and its capacity of both excitation and detection of fluorescence makes it the ideal device for working with fiber optic sensors.
Changing the injected liquid inside a microfluidic device has numerous applications, such as sequential sample injection for biochemistry and flow chemistry, or medium switch for cell biology and 3D cell culture on chip. The easiest solution is to replace the liquid injected, but it is often not possible:
This application note shows how to perform an ultrafast microfluidic medium switch (drugs, samples, etc) in an hypothetical chemical or biological environment, performed with an Elveflow® OB1 and an Elveflow® MUX
This application note shows how to perform an ultrafast microfluidic medium (drugs, samples, etc) change in an hypothetical chemical or biological environment, performed with an Elveflow® pressure & flow control instrument (OB1) as shown in these pictures:
This application note shows how to easily perform controlled drug switches on an hypothetic chemical or biological environment (drug screening or cell culture) with an Elveflow® MUX as shown on these pictures:
A series of videos produced specifically to provide our customers with the best experience.
Microfluidic flow control : The OB1® pressure controller has the advantage to be the faster and the most stable of the microfluidic flow controller. In combination with a flow sensor, it can also perform an ultra-precise flow control and monitor the amount of liquid injected in a chips. You can request a flow rate value in the Elveflow Software and the pressure controller will automatically adjust pressure to reach the requested value thanks to a customizable PID Feedback loop. This application note aims to guide you to easily perform this flow control.
Nanofluidics is the study of the behaviour, manipulation, and control of fluids that are confined to structures of nanometer characteristic dimensions. Various reasons may be found to motivate the development of Nanofluidics. From a biotechnological point of view, decreasing the scales considerably increases the sensitivity of analytic techniques. From a fluidic point of view, nanometric scales allow new fluidic functionalities to be developed, using the explicit benefit of the predominance of surfaces.
This application note explains how pressure-driven flow control works, the advantages & disadvantages of the different technologies, and the technical choice to make to how to perform effectively your microfluidic experiment.
This application note describes how to set and monitor a determined liquid flow rate and perform a flow control for your microfluidic experiments by using an Elveflow® pressure & flow control instrument and a flow sensor. The new version of the Elveflow® smart software allows to virtually turn your pressure controller into a syringe pump keeping the advantages of both methods (high performance, ease of use, intuitiveness, etc.)
The advent of microfluidics as a tool for chemical synthesis is coming of age, particularly in industrial techniques. It has many advantages over conventional techniques such as as small reagent consumption, improved selectivity, less stringent reaction clean up, rapid reactions and small footprints.
This application note describes how to generate a controlled flow inside a microfluidic chip and stop it completely (zero flow) by using an Elveflow® pressure control instrument (OB1) and valves.
The MUX Inj is a bidirectional 6-port / 2 position valve allowing to perform switches between two setup configurations. One application is to make a fluid recirculation set-up with a flow rate always going through the chip in the same direction. In this application note, we walk you through the steps of setting up a unidirectional recirculation through a semi permeable membrane.
The flow rate in every fluidic system can be computed with the following equation: ∆P=Q×Rh Where: ∆P is the pressure difference between the inlet and the outlet of the system, Q is the flow rate throughout the system, Rh is the fluidic resistance of the system.
Hydrodynamic flow focusing is a powerful tool in the field of microfludics that can be used for numerous applications, such as microfluidic mixing, separations, sensors, cell analysis, flow cytometry, diffusion-controlled chemical reactions and microfabrication. Hydrodynamic focusing occurs when fluids with different velocities are injected side by side. The most common way to perform hydrodynamic focusing is to use a 3 inlets microfluidic chips, where the core flow containing the sample of interest is sheathed by an inert fluid.
Maintain a controlled flow rate? This application note aims to help you maintain a controlled flow rate during a flow line switch thanks to the Mux Distributor. This valve allows to switch between up to 10 lines to inject several fluids sequentially in your system. It has many applications such as sequential sample injection for biochemistry and flow chemistry, or medium switch for cell biology on chip.
The MUX Wire enables you to host up & control many valves of your choice. It gives you a total freedom to add up to 16 valves and put them anywhere in your set-up and control them independently and simultaneously.
How to control the flow rate in your setup with very high accuracy thanks to flow measurement? The aim of this application note is to show how to easily perform a very responsive and precise flow rate control anywhere in your setup by using an Elveflow® OB1 pressure & flow controller and a Bronkhorst® flow sensor.
The MUX inj is a bidirectional 6-port / 2 position valve allowing to perform switches between two set-up configurations. One application is to perform a stable and unidirectional fluid recirculation or to inject a precisely controlled volume of drug. This application note focuses on the example and will walk you through the steps of a successful experiment.
Flow regulation is a compulsory operation in most of the microfluidics operations. In some applications such as 2D or 3D cell culture, flow regulation is essential since accurate micro-environmental parameters control is required. Elveflow do it’s best to make this operation as easy as possible to help you to focus on what really matter in your setup.
This application note aims to show how to manage pressure in microfluidic systems and monitor real time pressure in your microfluidic setup
Because of fluidic compliance of tubing and chip, achieving stop flow into a microfluidic device remain a challenge with conventional setup. One solution to achieve stop flow in hundreds of milliseconds into a microchip without residual flow is to use a pressure controller coupled with flow switch.
17 articles
Microfluidic sequential production and trapping of droplets for in situ optical analysis.
A protocol for high monodispersity and high encapsulation efficiency double emulsion production for encapsulation using microfluidics
Droplet-based microfluidics and single spore encapsulation offer the key for a breakthrough in antifungal screening and fungicide discovery.
Generate picoliter-sized microdroplets and perform single cell encapsulation with this detailled microfluidic protocol.
Nanobubble generation performed by microfluidics is described in an application note. Nanobubbles are very singular by their generation and properties.
Everything you need to know about microbubble generation, from theory to the microfluidics experimental steps.
This application note will show you how highly monodispersed droplets can be easily generated to encapsulate single spore of fungus using a microfluidic droplet generation system.
Highly monodispersed alginate beads can be easily generated with a microfluidic droplet generation system.
Two-phase flow microfluidics allow to perfom different laboratory functions on one microfluidic Lab-on-Chip (LoC) platform. An example of such an application is the controlled production of droplets on chip.
The generation and manipulation of droplets through microfluidics offer tremendous advantages: better control over small volumes of fluid, enhanced mixing, high throughput experiments.
This application note describes how to generate controlled size millifluidic droplets in a capillary by regulating the pressure rate and/or by regulating the flow rate.
Droplets generation has a large scale of applications, such as emulsion production, single cell analysis, drug delivery or nanoparticles synthesis. Droplets can also be used as micro bioreactors for chemical or biochemical reactions.
Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems.
Active droplet generation in microfluidics is of high interest for a wide range of applications. It provides an additional degree of freedom in manipulating both the size and the formation frequency of micro-droplets. This additional control is extremely desirable for complex operations which rely on the accurate control of both parameters.
17
Microfluidic droplet in a chip also called droplet generation by microfluidics presents many application & advantages. The droplet generation pack has been designed to fit most common droplet generation needs of researchers.
Droplet microfluidics and single cell encapsulation offer the key for a discovery engine in antibody therapy.
Accidental spillage of petroleum-based products and contaminants can cause severe environmental hazards to the ecosystem if not remediated effectively. Foam, a dispersion of gas in thin liquid films (named lamellae), has been identified as a remedy for these defects due to its unique properties.
19 articles
Biofilm testing using a simple microfluidic chip channel for in situ observation of their development under flow conditions.
Microfluidics for microscopy imaging in plant biology allows to observe, in vivo, the biological response of plant roots to various stimuli.
This application note describes how co-culture of different cell types in separate but interconnected chambers is possible in a microfluidic platform
This application note explains how to study bacteria adaptation to stress and environmental changes such as antibiotics.
In this application note we describe how to set up medium recirculation by using microfluidic valves
In this application note we describe how to create a medium recirculation for dynamic cell culture with a microfluidic setup.
In this application note we describe how to stain cells for dynamic cell culture with different microfluidic setups.
In this application note we describe how to do cell perfusion for dynamic cell culture and a way to enable uni-directional recirculation of medium.
A simple guide to do dynamic cell culture by automating cell seeding in a microlfuidic chip
This application note proposes a microfluidic cardiac cell culture model (μCCCM) to recreate mechanical loading conditions observed in the native heart (in both normal and pathological conditions) by using an Elveflow OB1 pressure and flow controller.
In this application note, we will describe how to perform an automated and fast medium switch thanks to the Perfusion Pack.
Medium switch is widely used in cell biology. One application is the study of cell behavior under given flow conditions for different samples. In this tutorial, we walk you through the steps of a fast and stable medium switch using IBIDI© flow cells.
Fluorescence reader for microfluidic qPCR: faster, more sensitive and less expensive than most optical microscopes, it is a smart alternative for real-time fluorescence measurements of your on-chip qPCR signal.
Prostate cancer is the second leading cause of cancer-related death for men. Circulating tumor cells (CTCs) are considered as a marker of early cancer diagnosis and disease severity. Their screening in blood is thus crucial to detect metastatic stage in cancer patients.
19
Until recently, microfluidic devices have been employed to support tissue-engineering experiments on basal lamina, vascular tissue, liver, bone, cartilage and neurons as well as organ-on-chips.
This application note presents how to perform cell culture on chip using the Cell and Biology Pack and the MicroSlides developed by ALine Inc.
This article covers the work of Adam L. Nekimken et al. published in Lab Chip in January 2017. The research team introduced a novel microfluidic device that enables high-resolution imaging of cellular deformations in response to precise mechanical stimuli to the surface of the C. Elegans worm cuticle.
This article covers the development of an experimental method enabling Shahar Sukenik et al. to study protein interactions and detect the dissociation of GAPDH and PGK proteins in order to quantify their stoichiometry directly inside the cell by modulating the cell-volume
Microfluidics is widely used to develop tools for cell biology. The micrometer scale of microfluidic devices is particularly adapted to work with cells.
For any help to determine what microfluidic instruments you need, you can contact us! Our experts will help you build the best microfluidic setup for your application, with our state-of-the-art microfluidic line.
Get a quote
Name*
Email*
Message
Newsletter subscription
We will answer within 24 hours
By filling in your info you accept that we use your data.
Collaborations
Need customer support?
Serial Number of your product
Support Type AdviceHardware SupportSoftware Support
Subject*
I hereby agree that Elveflow uses my personal data Newsletter subscription
How can we help you?
Message I hereby agree that Elveflow uses my personal data Newsletter subscription