Review done thanks to the support of the Phototrain H2020-MSCA-ITN-2017-Action “Innovative Training Networks” Grant agreement number: 722591 Written by Alex McMillan, PhD candidate alex.mcmillan@elvesys.com
The human lungs serve the vital purpose of gas exchange in the respiratory system. Their sponge-like structure serves to maximize the useful surface area in the form of alveoli subunits, where an air-liquid interface (ALI) exists between inhaled air and the vascular system across a thin, cell-lined membrane. This ALI is a feature of great interest in the understanding of lung behavior and pathology, for it is here that foreign objects and pathogens often first come into contact with the body. For an overview on recent advances in lung-on-a-chip technology, you can look here.
While many animal models have been used to study lung diseases (Cardoso, 2001; Matute-Bello et al., 2008; Morrisey and Hogan, 2010), they lack sufficient similarity with human systems, leaving gaps in what is possible in animal-based platforms. This is evidenced by the fact that 80% of drugs that pass preclinical animal trials do no in fact effectively treat the intended target diseases in humans (Perrin, 2014). A trend known as “Eroom’s Law” describes how the number of drugs that have been approved by the U.S. Food and Drug Administration per million dollars spend on drug R&D has halved every 9 years since 1950 (Scannell et al., 2012). This is a stark reminder of the growing challenges faced in biological research and that improved methods are direly needed. Thus, in vitro platforms using human cells have become necessary complement, if not replacement for animal models, which introduce a number of benefits in addition to the higher degree of biological similarity, such as the potential for high throughput screening, cost effectiveness and the addressing ethical concerns surrounding animal testing.
However, despite these advantages, there are also clear drawbacks that come with the transition from in vivo (animal) systems to in vitro systems, the most notable of which being the loss of complexity in cellular environments. The biomechanical cues that define cellular development and organ-level function is highly multifaceted and difficult to completely recapitulate on relatively simplistic, two-dimensional format cell cultures (Huh et al., 2011). Furthermore, the fact alone of studying cells in two dimensions limits the similarity to in vivo human cells. These factors have driven the development of 3D cell cultures, allowing the simultaneous culturing of multiple cell types throughout a variety of materials meant to simulate the in vivo extracellular matrix (ECM) (Kim and Rajagopalan, 2010). With the recent progress made in microfluidic techniques and equipment, 3D cell culturing methodology has can be augmented with a range of versatile techniques to even further approach recapitulation of organ-level functions in vitro. These include the possibility of the continuous perfusion of media and imposing controlled fluid and solid mechanical stresses on cultured cells in order to recreate the biochemical and biomechanical microenvironments in vivo. The devices born from the amalgamation have been dubbed organs-on-chip and present a large potential for revolutionizing the way human pathologies are studied. For a more comprehensive view on organ-on-chip in general click here. The microfluidic capabilities brought with microfluidics are particularly interesting for the recapitulation of the lung, which exhibits a highly mechanical environment, not least because of the forces imposed on cells with the tissue stretching that results from breathing. In this short review we discuss the origins and development of lung-on-a-chip platforms from a microfluidic design and implementation perspective. For a look at a comparatively state-of-the-art LOC, click here.
In 2010, Huh demonstrated a pioneering microfluidic device that has since defined the direction of lung-on-a-chip platforms (Huh et al., 2010). Here we will discuss the innovative design features included and a brief description of how it was used to study lung behavior. The device (Figure 1) consisted of three PDMS layers: two layers with parallel micropatterned channels and in between then a thin, porous membrane layer. This membrane served to create two-chamber membrane separated system. ECM was inserted into the chambers in order to coat both sides of the membrane for subsequent cell attachment. On one side of the membrane alveolar epithelial cells were seeded, and on the other side vascular endothelial cells were seeded. Next, an ALI was established by flowing air through the epithelial-side chamber, essentially mimicking the structure and cell makeup that is found in a human alveolus. While systems have been shown before to recreate this alveolar barrier, such as with Transwell devices (Yamaya et al., 2002), past devices have not been able to recreate the mechanical environment present at this membrane. Huh’s device achieved this mechanical stimulation with innovative use of the two lateral channels running parallel to the endothelial and epithelial channels. By applying vacuum to these side channels, the flexible PDMS could be deformed to achieve a controlled cyclic stretching of the cell-lined, artificial alveolar membrane at physiologically similar amplitudes and frequencies. This stretching of the membrane was performed during cell culturing and induced biomimetic alignment of the epithelial cell layer.
Figure 1: Mechanically active lung-on-chip device. The three layer PDMS device consists of two central chambers separated by a thin porous membrane seeded with alveolar epithelial cells on one side and vascular endothelial cells on the other. An air liquid interface is established by flowing air in the upper, alveolar channel. As illustrated, vacuum can be applied to the side chambers in order to deform the elastic PDMS walls, and thus the membrane. This serves to uni-directionally stretch the cells and simulates the stretching that is undergone during expansion and contraction of the alveoli in the human body. Taken from Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., Ingber, D.E., 2010. Reconstituting Organ-Level Lung Functions on a Chip. Science 328, 1662–1668. https://www.science.org/doi/10.1126/science.1188302
The effect of mechanical stimulation on the lung cell behavior was investigated from an immunological standpoint to confirm whether or not the inclusion of mechanical strain on the alveolar cells changed their behavior. An inflammatory cytokine (tumor necrosis factor-α, or TNF-α) was introduced into the vascular channel (that is, the channel on the endothelial side of the membrane). By measuring the endothelial expression of intercellular adhesion molecule-1 (ICAM-1), the group could monitor differences in immune inflammatory response with and without mechanical actuation of the membrane. Here there was not a measurable difference in immune response. However in investigating the LOC response to inflammatory nanoparticles, the membrane stretching became an important factor. To simulate the inhalation of nanoparticulates, silicon nanoparticles, commonly used in airborne nanotoxicity research (Napierska et al., 2009), were introduced into the alveolar channel of the device (that is, the channel on the epithelial side of the membrane). In this scenario, there was a marked difference in immunological response depending on whether or not the membrane was undergoing cyclic, breathing-simulating, stretching. With this mechanical actuation, there was an observed increase in immune response, again determined with ICAM-1 levels, as well as increased trans-membrane migration of the nanoparticles as compared with those measured in the device without stretching. These trends were in agreement with nanoparticle responses found in mice as well as with studies that have long-suggested of the toxic effects of nanoparticle-lung interactions (Nel et al., 2006).
This pivotal work by Huh et al. has since defined the direction of the mechanically active LOC platform. Here we briefly discuss some other works that are based on the same technique of recreating a cell-lined membrane, as above, and how they have been used for a variety of biological studies.
The first, presented by Huh et al. in 2007, was in fact a precursor to the above-described device, but it is worth discussing for its use of microfluidic engineering to achieve a different outcome. The device (Figure 2) (Huh et al., 2007) exhibited the same type of cell-line membrane-separated chambers, one of which being the “alveolar”, air-filled chamber, and the other being the “vascular” cell media-filled chamber. While there was no cyclic stretching of the membrane in this model, the group studied the effects of liquid plug flow, a physiological phenomenon that can occur with the propagation of pathological mucus plugs in diseases such as COPD, asthma, pulmonary edema and bronchiolitis (Cassidy et al., 1999). Using these microfluidically-generated liquid plugs, the group was able to recreate underlying epithelial cell injury and for better understanding and acoustic detection methods.
Figure 2: Liquid plug lung-on-chip model. Utilizing a specialized microfluidic channel geometry, liquid plugs can be generated and be propagated over a layer of epithelial cells on a porous membrane. Taken from Huh, D., Fujioka, H., Tung, Y.-C., Futai, N., Paine, R., Grotberg, J.B., Takayama, S., 2007. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl. Acad. Sci. 104, 18886–18891. https://www.pnas.org/doi/full/10.1073/pnas.0610868104
While the alveoli are an important site for greater study and understanding, they represent only one section of the respiratory system as a whole. Benam et al.’s device instead recreates the small airway, the smallest of the conductive pathways in the lung, on a microfluidic chip (Benam et al., 2015). The device (Figure 3) also featured a thin porous membrane seeded with cells, but the key difference was the type of cell chosen – bronchiolar epithelial cells instead of alveolar epithelial cells. They were able to investigate the small airway immune responses to bacteria and viruses and served as a good demonstration of how versatile this membrane-separated-type LOC device can be.
Figure 3: Small airway lung-on-a-chip model, utilizing bronchiolar epithelial cells seeded on a microporous membrane in the “air channel”, opposite a layer of endothelial cells in the “blood channel.” Taken from Benam, K.H., Villenave, R., Lucchesi, C., Varone, A., Hubeau, C., Lee, H.-H., Alves, S.E., Salmon, M., Ferrante, T.C., Weaver, J.C., 2015. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151.
Email* I hereby agree than Elveflow uses my personal data
Do you want tips on how to best set up your microfluidic experiment? Do you need inspiration or a different angle to take on your specific problem? Well, we probably have an application note just for you, feel free to check them out!
Discover the transformative potential of organoids and organ-on-a-chip technologies in advancing drug testing, disease modeling, and personalized medicine
Lab-On-a-Chip drug testing in Microfluidics
Exploring Organ-on-a-Chip Technology: A comprehensive review
Cell culture consists in growing cells in an artificial environment in order to study their behavior in response to their environment[1]. Different kinds of cell cultures can be found nowadays, and some would be more suited than others depending on its properties and applications.
Multi-organs on chip could also allow us to witness the side effects of certain drugs on different organs, not limited to those that the treatment targets.
At the beginning of the third millennium, due to prolonged aging, neurodevelopmental disorders are growing and a much deeper understanding of the brain is necessary.
Coronavirus (SARS-CoV2) diagnostic through microfluidics
In this report, we identify the following two main purposes for the 3D cell market
The liver is involved in more than 300 vital functions, but is mainly known for being part of the digestive tract, where it has the extremely important role of metabolizing both xenobiotics and nutrients (carbohydrates and lipids).
A heart-on-chip is a microfluidic chip reproducing the mechanisms of a heart, in order to test medicine quickly and observe the reaction of heart cells. Great care is given to mimic the mechanics of a heart in an artificial structure, lined with live heart cells.
It could be extremely interesting to build a human-on-chip that will model the interactions between different organs, but it is also essential to develop simulations of tissue-tissue interfaces and more generally of local organ behavior.
Since 2012, more and more people, companies or lab, have worked on the organ-on-a-chip. These cell cultures can, thanks to microfluidics, mimic the cells microenvironment of the human body. Thus, these chips could become wonderful search accelerators and we can hope that, in ten years, they could replace the animal testing. Finally, organs on chips could lead us to personalized medicine.
Organ-on-chip companies developping innovative technologies
Although we take part in various research projects such as artificial photosynthesis, pathogen detection and stem cell differentiation, the ultimate goal of our entrepreneurial adventure is to accelerate anti-aging research.
Get a quote
Name*
Email*
Message
Newsletter subscription
We will answer within 24 hours
By filling in your info you accept that we use your data.
Collaborations
Need customer support?
Serial Number of your product
Support Type AdviceHardware SupportSoftware Support
Subject*
I hereby agree that Elveflow uses my personal data Newsletter subscription
How can we help you?
Message I hereby agree that Elveflow uses my personal data Newsletter subscription