This article covers the development of an experimental method enabling Shahar Sukenik et al. to study protein interactions and detect the dissociation of GAPDH and PGK proteins in order to quantify their stoichiometry directly inside the cell by modulating the cell-volume [1].
The weakly bound protein complexes (called quinary interactions) have crucial functions in metabolic, regulatory, and signalling pathways. GAPDH and PGK proteins are two sequential enzymes in the glycolysis catalytic cycle shown to interact weakly, but the interaction has not been quantified in vivo. Their model resulted to log Kd = −9.7 ±0.3 and a 2:1 prevalent stoichiometry of the GAPDH:PGK complex.
Despite growing interest, quantification of quinary protein interactions is technically challenging because it requires detection in situ using a mildly perturbing technique. Using the Elveflow’s OB1 Mk3 Flow Controller and the MFS5 Flow Sensor, they generated a 3 mL/min precise flow rate, using hypoosmotic media and hyperosmotic media in order to induce osmolarity pressure. This flowrate was selected as an optimal value that gives fast medium switches, with little flow-related focus drifts.
Figure 1 : Representative 3D confocal images of cells subjected to volume modulation. Image at Left shows maximum xy projection. Images at Right show an xz slice before (Upper) and 1 min after (Lower) osmotic challenge. (Scale bars: xy, 20μm; xz, 10 μm)
OB1 Mk3 Flow Controller + MFS5 Flow Sensor
FRET illumination setup
The setup of Sukenik et al. interfaces an epifluorescence microscope with a temperature-controlled flow cell coupled to the Elveflow’s OB1 Mk3 Flow Controller, and the MFS5 Flow Sensor which flow rate range is [0 ; 5mL/min] with an accuracy of 10µL/min. The setup makes use of fluorescence resonance energy transfer (FRET) between the two light-sensitive proteins GAPDH and PGK.
To deduce the stoichiometry of the GAPDH:PGK complex, Sukenik et al. tagged the proteins of with fluorescent protein labels (FPs), to then observe the re-equilibration process thanks to FRET mechanism and cell-volume modulation using the osmotic pressure between hypoosmotic media and hyperosmotic media (injected with the OB1 Mk3 Flow Controller).
They first tried to show that cellular crowding changes are in proportion to volume changes by using the synthetic crowding sensor fCrH2. Then, they examined two pairs of fluorescent proteins markers (FPs), AcGFP1/mCherry and mEGFP/mCherry to study which couple gives a higher fluorescence response, to finally test the best one with the GAPDH:PGK complex.
Figure 2 : (a) Representative flow profiles from 15 independent experiments showing individual flow profiles (gray) and the average (red). Flow is measured using the MFS5 Flow Sensor generated by the OB1 Flow Controller. The spikes at 10 and 160 s result from medium switching and are useful for marking the “time 0” for the osmolarity perturbation cycle.
(b) Osmolarity detected using fluorescein. The fluorescent signal is proportional to solution osmolarity. Shown here are 6 independent measurements of a switch to 0.8 Osm (in gray) which are averaged to give the osmolarity profile (shown in red). These measurements were done independently of FRET measurements.
The OB1 Flow Controller and the MFS5 Flow Sensor used together generated an average 3mL/min flow rate with a reduced standard deviation of 0.1mL/min, namely 3,3% of the 3mL/min flow rate. By producing precise perturbation cycles, they managed to perform fast medium switches, without flow-related focus drifts, making hypoosmotic and hyperosmotic media changes more efficient and precise.
Concerning the main results of their work, Sukenik et al. produced data showing that mEGFP does not interact with mCherry in cells. Thus, using AcGFP1/mCherry couple, their model resulted to log Kd = −9.7 ±0.3 and a 2:1 prevalent stoichiometry of the GAPDH:PGK complex. Thanks to a precise flow rate injected by the OB1 Flow Controller, they managed to perform switches of hypoosmotic and hyperosmotic media without focus drifts.
Their results finally proved that free volume modulation can be exploited to reveal the binding affinity and stoichiometry of weakly bound complexes inside the cell like GAPDH:PGK one, showing that quinary interactions quantification is from now on achievable thanks to microfluidics and Elveflow products.
[1] Shahar Sukenik, Pin Ren, and Martin Gruebele. Weak protein–protein interactions in live cells are quantified by cell-volume modulation. Proc Natl Acad Sci U S A.. (2017)
How can we help you?
Name*
Email*
Message
Newsletter subscription
We will answer within 24 hours
By filling in your info you accept that we use your data.
Do you want tips on how to best set up your microfluidic experiment? Do you need inspiration or a different angle to take on your specific problem? Well, we probably have an application note just for you, feel free to check them out!
Biofilm testing using a simple microfluidic chip channel for in situ observation of their development under flow conditions.
Microfluidics for microscopy imaging in plant biology allows to observe, in vivo, the biological response of plant roots to various stimuli.
This application note describes how co-culture of different cell types in separate but interconnected chambers is possible in a microfluidic platform
This application note explains how to study bacteria adaptation to stress and environmental changes such as antibiotics.
In this application note we describe how to set up medium recirculation by using microfluidic valves
In this application note we describe how to create a medium recirculation for dynamic cell culture with a microfluidic setup.
In this application note we describe how to stain cells for dynamic cell culture with different microfluidic setups.
In this application note we describe how to do cell perfusion for dynamic cell culture and a way to enable uni-directional recirculation of medium.
A simple guide to do dynamic cell culture by automating cell seeding in a microlfuidic chip
This application note proposes a microfluidic cardiac cell culture model (μCCCM) to recreate mechanical loading conditions observed in the native heart (in both normal and pathological conditions) by using an Elveflow OB1 pressure and flow controller.
In this application note, we will describe how to perform an automated and fast medium switch thanks to the Perfusion Pack.
Medium switch is widely used in cell biology. One application is the study of cell behavior under given flow conditions for different samples. In this tutorial, we walk you through the steps of a fast and stable medium switch using IBIDI© flow cells.
Fluorescence reader for microfluidic qPCR: faster, more sensitive and less expensive than most optical microscopes, it is a smart alternative for real-time fluorescence measurements of your on-chip qPCR signal.
Prostate cancer is the second leading cause of cancer-related death for men. Circulating tumor cells (CTCs) are considered as a marker of early cancer diagnosis and disease severity. Their screening in blood is thus crucial to detect metastatic stage in cancer patients.
Until recently, microfluidic devices have been employed to support tissue-engineering experiments on basal lamina, vascular tissue, liver, bone, cartilage and neurons as well as organ-on-chips.
Get a quote
Collaborations
Need customer support?
Serial Number of your product
Support Type AdviceHardware SupportSoftware Support
Subject*
I hereby agree that Elveflow uses my personal data Newsletter subscription
Message I hereby agree that Elveflow uses my personal data Newsletter subscription